Diminished efficacy of regional marine cloud brightening in a warmer world (2024)

References

  1. Emissions gap report 2022: the closing window—climate crisis calls for rapid transformation of societies. United Nations Environment Programme https://www.unep.org/emissions-gap-report-2022 (2022).

  2. Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance (National Academies of Sciences, Engineering and Medicine, 2021).

  3. Caldeira, K., Bala, G. & Cao, L. The science of geoengineering. Annu. Rev. Earth Planet. Sci. 41, 231–256 (2013).

    Article CAS Google Scholar

  4. Irvine, P. J., Kravitz, B., Lawrence, M. G. & Muri, H. An overview of the Earth system science of solar geoengineering. WIREs Clim. Change 7, 815–833 (2016).

    Article Google Scholar

  5. MacMartin, D. G., Ricke, K. L. & Keith, D. W. Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target. Philos. Trans. R. 376, 20160454 (2018).

    Article Google Scholar

  6. Tilmes, S. et al. Reaching 1.5 °C and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering. Earth Syst. Dyn. 11, 579–601 (2020).

    Article Google Scholar

  7. Irvine, P. J. et al. Towards a comprehensive climate impacts assessment of solar geoengineering. Earths Future 5, 93–106 (2017).

    Article Google Scholar

  8. MacMartin, D. G., Keith, D. W., Kravitz, B. & Caldeira, K. Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing. Nat. Clim. Change 3, 365–368 (2013).

    Article CAS Google Scholar

  9. Jinnah, S. et al. Governing climate engineering: a proposal for immediate governance of solar radiation management. Sustainability 11, 3954 (2019).

    Article Google Scholar

  10. Táíwò, O. O. & Talati, S. Who are the engineers? Solar geoengineering research and justice. Glob. Environ. Polit. 22, 12–18 (2021).

    Article Google Scholar

  11. Talati, S. & Higgins, P. Policy sector perspectives on geoengineering risk and governance. J. Sci. Policy Gov. 14 (2019).

  12. Tollefson, J. Can artificially altered clouds save the Great Barrier Reef? Nature 596, 476–478 (2021).

    Article CAS Google Scholar

  13. Bernstein, D. N., Neelin, J. D., Li, Q. B. & Chen, D. Could aerosol emissions be used for regional heat wave mitigation? Atmos. Chem. Phys. 13, 6373–6390 (2013).

    Article Google Scholar

  14. Dipu, S. et al. Substantial climate response outside the target area in an idealized experiment of regional radiation management. Climate 9, 66 (2021).

    Article Google Scholar

  15. Nalam, A., Bala, G. & Modak, A. Effects of Arctic geoengineering on precipitation in the tropical monsoon regions. Clim. Dyn. 50, 3375–3395 (2018).

    Article Google Scholar

  16. Ricke, K., Ivanova, D., McKie, T. & Rugenstein, M. Reversing Sahelian droughts. Geophys. Res. Lett. 48, e2021GL093129 (2021).

    Article Google Scholar

  17. MacMartin, D. G., Kravitz, B. & Goddard, P. B. Transboundary effects from idealized regional geoengineering. Environ. Res. Commun. 5, 091004 (2023).

    Article Google Scholar

  18. Latham, J. Control of global warming? Nature 347, 339–340 (1990).

    Article Google Scholar

  19. Latham, J. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos. Sci. Lett. 3, 52–58 (2002).

    Article Google Scholar

  20. Hill, S. & Ming, Y. Nonlinear climate response to regional brightening of tropical marine stratocumulus. Geophys. Res. Lett. 39, 15707 (2012).

    Article Google Scholar

  21. Jones, A., Haywood, J. & Boucher, O. Climate impacts of geoengineering marine stratocumulus clouds. J. Geophys. Res. Atmospheres 114, 10106 (2009).

    Article Google Scholar

  22. Jones, A. & Haywood, J. M. Sea-spray geoengineering in the HadGEM2-ES earth-system model: radiative impact and climate response. Atmos. Chem. Phys. 12, 10887–10898 (2012).

    Article CAS Google Scholar

  23. Rasch, P. J., Latham, J. & Chen, C.-C. C. Geoengineering by cloud seeding: influence on sea ice and climate system. Environ. Res. Lett. 10.1088/1748-9326/4/4/045112 (2009).

  24. Thompson, V. et al. The 2021 western North America heat wave among the most extreme events ever recorded globally. Sci. Adv. 8, eabm6860 (2022).

    Article Google Scholar

  25. Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. https://doi.org/10.1029/2019MS001916 (2020).

  26. Zhang, J., Zhou, X., Goren, T. & Feingold, G. Albedo susceptibility of northeastern Pacific stratocumulus: the role of covarying meteorological conditions. Atmos. Chem. Phys. 22, 861–880 (2022).

    Article CAS Google Scholar

  27. Alterskjær, K. & Kristjánsson, J. E. The sign of the radiative forcing from marine cloud brightening depends on both particle size and injection amount. Geophys. Res. Lett. 40, 210–215 (2013).

    Article Google Scholar

  28. Watson-Parris, D. et al. Shipping regulations lead to large reduction in cloud perturbations. Proc. Natl Acad. Sci. USA 119, e2206885119 (2022).

    Article CAS Google Scholar

  29. Rossow, W. B. et al. Climate data record program (2016): international satellite cloud climatology project climate data record, H-Series Basic HGM. NOAA Natl Cent. Environ. Inf. https://doi.org/10.7289/V5QZ281S (2016).

    Article Google Scholar

  30. Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).

    Article Google Scholar

  31. Luongo, M. T., Xie, S.-P. & Eisenman, I. Buoyancy forcing dominates the cross-equatorial ocean heat transport response to northern hemisphere extratropical cooling. J. Clim. 35, 3071–3090 (2022).

    Article Google Scholar

  32. Luongo, M. T., Xie, S.-P., Eisenman, I., Hwang, Y.-T. & Tseng, H.-Y. A pathway for northern hemisphere extratropical cooling to elicit a tropical response. Geophys. Res. Lett. 50, e2022GL100719 (2023).

    Article Google Scholar

  33. Dong, Y., Armour, K. C., Battisti, D. S. & Blanchard-Wrigglesworth, E. Two-way teleconnections between the southern ocean and the Tropical Pacific via a dynamic feedback. J. Clim. 35, 2667–2682 (2022).

    Article Google Scholar

  34. Fasullo, J. T., Rosenbloom, N. & Buchholz, R. A multiyear tropical Pacific cooling response to recent Australian wildfires in CESM2. Sci. Adv. 9, eadg1213 (2023).

    Article Google Scholar

  35. Dagan, G. Sub-Tropical aerosols enhance tropical cloudiness—a remote aerosol-cloud lifetime effect. J. Adv. Model. Earth Syst. 14, e2022MS003368 (2022).

    Article Google Scholar

  36. Miyamoto, A., Nakamura, H., Xie, S.-P., Miyasaka, T. & Kosaka, Y. Radiative impacts of californian marine low clouds on north pacific climate in a global climate model. J. Clim. 36, 8443–8459 (2023).

    Article Google Scholar

  37. Wang, J., Moore, J. C. & Zhao, L. Changes in apparent temperature and PM2.5 around the Beijing–Tianjin megalopolis under greenhouse gas and stratospheric aerosol intervention scenarios. Earth Syst. Dyn. 14, 989–1013 (2023).

    Article CAS Google Scholar

  38. Heat forecast tools. National Weather Service https://www.weather.gov/safety/heat-index (accessed 3 April 2024).

  39. Yu, S. & Pritchard, M. S. A strong role for the AMOC in partitioning global energy transport and shifting ITCZ position in response to Latitudinally discrete solar forcing in CESM1.2. J. Clim. 32, 2207–2226 (2019).

    Article Google Scholar

  40. Li, X., Xie, S.-P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change 6, 275–279 (2016).

    Article Google Scholar

  41. Trenberth, K. E. & Fasullo, J. T. Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD018020 (2012).

  42. Gan, B. et al. On the response of the Aleutian low to greenhouse warming. J. Clim. 30, 3907–3925 (2017).

    Article Google Scholar

  43. RRAP. Reef Restoration and Adaptation Program https://gbrrestoration.org/ (accessed 3 May 2023).

  44. Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).

    Article Google Scholar

  45. Ahlm, L. et al. Marine cloud brightening—as effective without clouds. Atmos. Chem. Phys. 17, 13071–13087 (2017).

    Article CAS Google Scholar

  46. Goddard, P. B., Kravitz, B., MacMartin, D. G. & Wang, H. The shortwave radiative flux response to an injection of sea salt aerosols in the Gulf of Mexico. J. Geophys. Res. Atmos. 127, e2022JD037067 (2022).

    Article CAS Google Scholar

  47. Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. T. CMIP6 models predict significant 21st century decline of the atlantic Meridional overturning circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).

    Article Google Scholar

  48. Hirasawa, H., Hingmire, D., Singh, H., Rasch, P. J. & Mitra, P. Effect of regional marine cloud brightening interventions on climate tipping elements. Geophys. Res. Lett. 50, e2023GL104314 (2023).

    Article Google Scholar

  49. Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    Article CAS Google Scholar

  50. Anderson, G. B., Bell, M. L. & Peng, R. D. Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect. 121, 1111–1119 (2013).

    Article Google Scholar

  51. Lee, C. C. & Sheridan, S. C. A new approach to modeling temperature-related mortality: non-linear autoregressive models with exogenous input. Environ. Res. 164, 53–64 (2018).

  52. Steadman, R. G. A universal scale of apparent temperature. J. Appl. Meteorol. Climatol. 23, 1674–1687 (1984).

    Article Google Scholar

  53. Buzan, J. R., Oleson, K. & Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8, 151–170 (2015).

    Article Google Scholar

  54. Rothfusz, L. P. and NWS Southern Region Headquarters. The heat index equation (or, more than you ever wanted to know about heat index). Natl Ocean. Atmos. Adm. 9023, 640 (1990).

    Google Scholar

  55. NOAA and National Weather Service. Heat index equation. Weather Prediction Center https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml (2022).

  56. Im, E.-S., Pal, J. S. & Eltahir, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322 (2017).

    Article Google Scholar

  57. Powis, C. M. et al. Observational and model evidence together support wide-spread exposure to noncompensable heat under continued global warming. Sci. Adv. 9, eadg9297 (2023).

  58. Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA 107, 9552–9555 (2010).

    Article CAS Google Scholar

  59. Buzan, J. R. & Huber, M. Moist heat stress on a hotter earth. Annu. Rev. Earth Planet. Sci. 48, 623–655 (2020).

    Article CAS Google Scholar

  60. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article Google Scholar

  61. Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Clim. Change Service https://doi.org/10.24381/cds.f17050d7 (2023).

  62. Taszarek, M. et al. Comparison of convective parameters derived from ERA5 and MERRA-2 with Rawinsonde data over Europe and North America. J. Clim. 34, 3211–3237 (2021).

    Google Scholar

  63. Gridded population of the world, version 4 (GPWv4): population count, revision 11. Center for International Earth Science Information Network https://doi.org/10.7927/H4JW8BX5 (2018).

  64. Gao, J. Global 1-km downscaled population base year and projection grids based on the shared socioeconomic pathways, revision 01. SEDAC https://doi.org/10.7927/q7z9-9r69 (2020).

  65. Wan, J. S. et al. Data from: Diminished efficacy of regional marine cloud brightening in a warmer world. UC San Diego Library Digital Collections https://doi.org/10.6075/J0WW7HW0 (2024).

  66. Wan, J. Code from: Diminished efficacy of regional marine cloud brightening in a warmer world (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.11193761 (2024).

Download references

Diminished efficacy of regional marine cloud brightening in a warmer world (2024)

References

Top Articles
Latest Posts
Article information

Author: Kieth Sipes

Last Updated:

Views: 6773

Rating: 4.7 / 5 (67 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Kieth Sipes

Birthday: 2001-04-14

Address: Suite 492 62479 Champlin Loop, South Catrice, MS 57271

Phone: +9663362133320

Job: District Sales Analyst

Hobby: Digital arts, Dance, Ghost hunting, Worldbuilding, Kayaking, Table tennis, 3D printing

Introduction: My name is Kieth Sipes, I am a zany, rich, courageous, powerful, faithful, jolly, excited person who loves writing and wants to share my knowledge and understanding with you.